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A B S T R A C T

Land-use legacies are important for explaining present-day ecological patterns and processes. However, an
overarching approach to quantify land-use history effects on ecosystem properties is lacking, mainly due to the
scarcity of high-quality, complete and detailed data on past land use. We propose a general framework for
quantifying the effects of land-use history on ecosystem properties, which is applicable (i) to different ecological
processes in various ecosystem types and across trophic levels; and (ii) when historical data are incomplete or of
variable quality.

The conceptual foundation of our framework is that past land use affects current (and future) ecosystem
properties through altering the past values of resources and conditions that are the driving variables of eco-
system responses. We describe and illustrate how Markov chains can be applied to derive past time series of
driving variables, and how these time series can be used to improve our understanding of present-day ecosystem
properties.

We present our framework in a stepwise manner, elucidating its general nature. We illustrate its application
through a case study on the importance of past light levels for the contemporary understorey composition of
temperate deciduous forest. We found that the understorey shows legacies of past forest management: high past
light availability lead to a low proportion of typical forest species in the understorey. Our framework can be a
useful tool for quantifying the effect of past land use on ecological patterns and processes and enhancing our
understanding of ecosystem dynamics by including legacy effects which have often been ignored.

1. Introduction

Ecological memory is defined as ‘the capacity of past states or experi-
ences to influence present or future responses of the community’ (Padisák,
1992), and as ‘the degree to which an ecological process is shaped by past
modifications of a landscape’ (Peterson, 2002). The importance of eco-
logical memory in plant and ecosystem processes has been demon-
strated in a recent study by Ogle et al. (2015), who showed that various
ecosystem processes, across biological, temporal and/or spatial scales,
were better explained when models take into account antecedent con-
ditions on top of contemporary conditions. Similar patterns have been
observed in other ecosystems (Barron-Gafford et al., 2014; Cable et al.,

2013; Hawkins and Ellis, 2010; Leuning et al., 2005; Oesterheld et al.,
2001; Sala et al., 2012). An ecosystem’s ecological memory is (among
other factors) caused by the past land use of the system, which influ-
ences the past conditions of the system (Schaefer, 2009; Sun et al.,
2013).

Past land use can affect ecosystems for decades to centuries (Foster
et al., 2003; Lunt and Spooner, 2005). The system properties resulting
from past land use are called land-use legacies (Foster et al., 2003;
Kopecký and Vojta, 2009; Perring et al., 2016). Examples of species and
communities affected by past land use include plant community com-
position in forests (De Frenne et al., 2011; Dupouey et al., 2002; Flinn
and Marks, 2007; Peterken and Game, 1984), grasshoppers in
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woodlands (Hahn and Orrock, 2015), butterflies in grasslands (Moranz
et al., 2012), fish and invertebrates in streams (Harding et al., 1998),
and birds in Mediterranean forests and shrublands (De Cáceres et al.,
2013). In general, there is increasing evidence that past land use can
affect future biodiversity over decades to centuries (Bürgi et al., 2017;
Essl et al., 2015).

Given the importance of past land use for explaining current and
future ecosystem properties, a standardized method to quantify the
effects of past land use is needed. Most existing classification schemes
or indices for land use consider only contemporary land-use intensity
and are developed for one specific ecosystem type, such as forest,
grassland or agricultural land (e.g. Blüthgen et al., 2012; Dietrich et al.,
2012; Kahl and Bauhus, 2014; Luyssaert et al., 2011; Schall and
Ammer, 2013). They do not capture past land use or historical land-use
changes and lack general applicability. More general frameworks for
quantifying ecological memory (e.g. Ogle et al., 2015) require a lot of
data. Such data, including continuous time series, are often lacking for
long-term processes (e.g. time scales of decades or even centuries).

We propose a framework that can help resolve the above-mentioned
restrictions, by quantifying the effect of land-use history on ecological
processes in different ecosystem types, even when data on past land use
is incomplete, uncertain and of low quality or resolution. We do not
intend to replace existing methods such as the modelling approach from
Ogle et al. (2015); our framework can support and complement existing
methods through developing the well-needed and often lacking time
series of environmental variables. Our basic postulate is that past land
use affects current (and future) ecological properties. This occurs
through the past land use altering resources and conditions that are the
driving variables of ecosystem and community responses (Perring et al.,
2016) (Fig. 1). Testing this postulate would be aided by time series data
of the driving variables, but such series are rarely available. Trajectories
of past land use, even if uncertain, are more frequently known (e.g.
McGrath et al., 2015).

Here, we provide a general framework to derive time series of
driving variables from known land-use history. By defining the driving
variables case-specifically, the framework can be used for a wide range
of ecological processes and properties within different ecosystems. In
this paper, we describe how Markov chains can be applied to derive
time series of driving variables given the known land-use history.
Additionally, we provide an illustration of how past values of driving
variables can be used to explain current ecosystem properties. Our

framework is based on Markov-chain modelling (box 1), a stochastic
modelling approach that is often used to model temporal ecosystem
changes, such as successional vegetation change, based on temporal
autocorrelation in time series (Balzter, 2000; Golroo et al., 2012; Horn,
1975; Logofet and Lesnaya, 2000; Usher, 1981). Markov chains can
deal with different types of data as well as uncertainties or missing data,
and can incorporate expert knowledge to describe causal relations in
the network when long-term data series are lacking (Golroo et al.,
2012) (as also implemented in Bayesian belief network modelling
(Aguilera et al., 2011; Pollino et al., 2007)). Hence, Markov chains are
highly suitable when land-use history data are incomplete or uncertain,
which is often the case.

We describe our framework step-by-step (Section 2, Fig. 3). In each
step, we provide a general description of the modelling approach, and
illustrate the proposed approach with a specific case study about the
effects of past forest management practices on the current understorey
composition in temperate forests. We outline some of the main
strengths and opportunities of the framework, describe how the model
performance could be improved, and discuss the applicability of the
framework to assess how past land use influences current ecosystem
properties (Section 3).

2. Stepwise explanation and illustration of the modelling
framework

In our framework, a Markov chain models the dynamics of the
driving variables of the studied ecosystem process. A variable re-
presenting the land-use history (called land-use variable) is added to the
chain as an auxiliary variable (cf. box 1, Fig. 2). The final model re-
presents the dynamics of a driving variable, under the assumption that
its present state is directly influenced by the current land-use state, and
indirectly by past land use, through the past states of the driving
variable (Fig. 2).

Below, we describe the modelling approach step-by-step. Each step
contains a general explanation and a specific application for a case
study. In the case study, we aim to assess the effect of past forest
management practices on the current understorey composition, in
terms of the proportion of typical forest species (i.e. species found
mainly in closed forest, as defined for the lowlands of the Czech
Republic, cf. Heinken, unpublished results). We use 29 forest plots from
Koda Wood (Czech Republic), Zvolen (central Slovakia) and Slovak
Karst (south-eastern Slovakia). For each plot, a description of the
management history since 1950 and two vegetation surveys (the first in
the 1950s, 60s or 70s, depending on the region, and the second in 2015)
are available (see Appendix A). The plots were originally established in
mostly oak-dominated forests managed either as coppice, coppice-with-
standards or high forests. In each region, we resurveyed plots from all
three management categories to cover the historical management
variability. Between the surveys, the intensity of forest management
generally decreased and shifted from historically dominant coppicing to
presently high forest management or no regular management in forest
reserves. The change in management resulted in a general decline of
plant species richness and a spatial homogenization of the vegetation
(Hédl et al., 2010; Kopecký et al., 2013). The species that showed the
strongest decline were light-demanding species typical for open oak
forests such as Bupleurum falcatum, Carex montana, Silene nutans, Ver-
onica chamaedrys agg., Ajuga genevensis, Lotus corniculatus, Campanula
persicifolia and Tanacetum corymbosum. In contrast, shade-tolerant,
mesic and nutrient-demanding species such as Aliaria petiolata, Asarum
europaeum, Hepatica nobilis, Mercurialis perennis, Galium aparine and
Neotia nidus-avis became dominant in the understorey. The annual Im-
patiens parviflora was the only invasive alien species with higher oc-
currence across the studied plots. The majority of the species in the
study plots were perennials (full species list in Appendix G). Tree spe-
cies regeneration became more abundant, particularly of shade-tolerant
tree species such as Fagus sylvatica and Carpinus betulus (Máliš et al.,

Fig. 1. Rationale of the proposed framework: past land use affects current
ecosystem conditions through alteration of the resources and conditions that
are the driving variables of ecosystem responses. We describe and illustrate how
Markov chains can be applied to derive time series of driving variables given
the known land-use history, and we provide an illustration of how time series of
driving variables can be used to explain current ecosystem conditions.
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2016).

2.1. Step 1: Defining variables

The ecological process of interest is scrutinised to identify its main
driving variables. For example, soil pH, soil moisture content, nutrient
availability, and light availability are important driving variables for
plant community composition trajectories (Klanderud et al., 2015),
whereas soil temperature and moisture content are among the main
driving variables for soil respiration rates (Ogle et al., 2015). Making an
informed choice in this first step is vital, as the chosen driving variable
(s) should enable the user to evaluate how land use affects the

ecological process of interest. We only consider one driving variable in
the further description and illustration of the framework, but the entire
process can be repeated for the multiple variables that drive the same
ecological process.

In our case study, the ecological process of interest is the shaping of
the forest understorey community. We selected light transmittance as
the driving variable because the understorey composition changes ob-
served in our study regions were strongly related to the light require-
ment of understorey plants (Hédl et al., 2010; Kopecký et al., 2013) and
light availability is one of the main environmental factors controlling
the establishment and growth of plant species in forests (Baeten et al.,
2009; Thomaes et al., 2013; Tinya and Ódor, 2016). Several studies

Fig. 2. The Markov-chain model used within the framework presented in this paper, consisting of a first-order Markov chain (a) with an additional direct effect (b)
between the state variable at t−2 and the state variable at t (i.e. second-order Markov chain) and an additional auxiliary variable (c) representing the land-use
history of the system.

Fig. 3. Flowchart illustrating the steps of the framework, applied to our case study. Note that only a few rows of the TPM are shown here as an illustration. The full
second-order TPM, with 64 rows, can be found in Appendix B. The data and graphs shown for step 5, 6, 7 and 8 are based on a hypothetical plot with a land-use
history as described in Step 5 of the figure. With LT light transmittance, LU land use, SS strong shade, MS moderate shade, ML moderate light, SL strong light, ZC zero
cut, T thinning, SC shelter cut and CC clear-cut.
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have observed time lags in vegetation response to understorey light
conditions (Dölle and Schmidt, 2009; Thomas et al., 1999), suggesting
that past values of light transmittance can be important for current
understorey composition. Light transmittance is defined as the ratio of
the amount of solar radiation reaching the understorey to the total in-
cident radiation at the top of the canopy (Parker, 2014). It is a common
assumption that using light transmittance (%) rather than absolute
values of radiation allows for predictions or estimations without
knowledge on specific climate and weather conditions (Balandier et al.,
2009). Light transmittance depends on forest architecture, and is, as
such, mostly uninfluenced by the absolute amount of light at the top of
the canopy. Light transmittance depends on canopy closure and hence
on the time of the year. In the further description of our case study, we
consider the light transmittance in July.

After identifying the process-specific driving variable, a suitable
variable representing the land use of the system is defined. The chosen
land-use variable can be related to one or more of the various aspects
comprising land use, such as land cover (e.g. grassland, arable land,
forest, heathland), fertilizer type and fertilization intensity, soil ma-
nipulation (e.g. ploughing, tilling), harvesting (e.g. crop type in arable
fields, different management regimes for timber production in forests,
litter raking in forests), and should have a potential effect on the driving
variable. For example, past fertilization type and intensity can be sui-
table land-use variables when soil pH is chosen as the driving variable
(Koerner et al., 1997).

As the land-use variable in our case study, we selected forest man-
agement, given its possible impact on the canopy composition and
structure and hence on light transmittance (Thomaes et al., 2014) and
the forest understorey (e.g. Kopecký et al., 2013; Perring et al., 2018;
Ujházy et al., 2017; Van Calster et al., 2008). We did not consider other
factors affecting light transmittance, such as tree species and phe-
nology, but kept in mind that these could influence the interpretation of
the results.

2.2. Step 2: Discretization of variables

First, to be able to use a driving variable in our Markov chain, the
variable needs to be discretized (cf. box 1) by defining a finite set of
ecologically relevant, representative states (Carpinone et al., 2015;
Shamshad et al., 2005). In our case study, we defined sensible discrete
states for light transmittance, looking at the relationship between light
transmittance and understorey community composition in temperate
deciduous forests in Europe. We used three threshold values between
four light transmittance states: strong shade (0–8%), moderate shade
(8–20%), moderate light (20–40%) and strong light (> 40%). Many
understorey species of temperate deciduous forest benefit from light
levels below 8%, when the survival of certain competitors is limited (De
Keersmaeker et al., 2004). For some forest understorey species, the
survival is higher under moderate levels of shade (8–20%) than under
strong shade (≤8%) (Thomaes, 2014). Understorey cover reaches an
asymptotic maximum at around 40% light transmittance (Balandier
et al., 2009).

Second, similar to the driving variable, also the land-use variable
needs to be discretized. In our case study, we defined four states of
forest management (further on referred to as land-use states) that cover a
gradient in management intensity, and encompass the typical forest
management actions in our study regions:

• Zero cut: no tree fellings or removals, forest under a zero manage-
ment system or forest in a period in between two interventions of a
rotation system;
• Thinning: the removal of a proportion of trees to allow more
growing space for the final crop trees (den Ouden et al., 2010) or
management actions with similar effects on the canopy structure,
such as selection felling of single trees;
• Shelter cut: a method of securing natural tree regeneration under

the sparse shelter of old trees that are removed by successive cut-
tings to admit a gradually increasing amount of light to the seedlings
(den Ouden et al., 2010) or the cutting phase in a coppice-with-
standards system resulting in a similar forest structure;
• Clear-cut: most or all trees in an area are cut, e.g. the harvesting
phase of coppice systems or high forest systems with a clear-felling
management.

Third, the magnitude of the time step (Δt) in the chain should be
clearly defined. The time step can vary from less than seconds to more
than years, depending on the chosen driving and land-use variables, the
ecological process considered, and the availability of land-use history
data (Carpinone et al., 2015). In our case study, the time step (Δt) is
mainly constrained by the temporal resolution of the available land-use
history data (Section 2.5) and set at 10 years. The 10-year time step
corresponds well to the typical management cycles in temperate forests
(den Ouden et al., 2010; Kerr and Haufe, 2011), but might be too long
to detect short-term temporal dynamics in understorey composition.
Smaller time steps would have been better to predict light dynamics
that drive understorey composition. However, due to the absence of
high-resolution land-use history data, high-resolution predictions of
light dynamics would be highly uncertain and therefore contain no
additional information compared to the light availability data derived
from the model with Δt= 10 years.

2.3. Step 3: Defining the model

One can adjust the proposed Markov-chain model to the system and
the driving variable of interest by defining the appropriate order of the
Markov chain. The order of a Markov chain is the number of time steps
in the past that can directly influence the current state (Shamshad et al.,
2005). In a simple first-order Markov chain, the present state of the
modelled variable only depends on the previous state of that variable.
However, for some ecological processes, it might be necessary to in-
clude higher-order terms to the chain, to account for the possible eco-
logical memory in the dynamics of the driving variables controlling the
processes. For example, adding a second-order arrow to the chain,
implies that the state of the driving variable at time t can depend both
on the previous state (t−1) and the state before that (t−2) (box 1)
(Usher, 1979). The order that should be used when applying the fra-
mework will be case-specific, and depends on the expected ecological
memory of the driving variable that is modelled, as well as on the level
of complexity that can be dealt with in the Transition Probability Ma-
trix (TPM; see Section 2.4). When validation data are available, results
from chains with different orders can be compared to assess how long
influences of the past remain important for contemporary states. In
addition, mathematical methods are available to identify whether
second-order relations are sufficiently important to include when
compared to the first-order relations in the model (BayesFusion, 2017).
We show later (see Section 2.4) that in our particular case study, a first
order model was sufficient to model the light dynamics over time.

2.4. Step 4: Transition probability matrix

The Transition Probability Matrix (TPM; box 1) quantifies the causal
relations between the different variables in the Markov chain (Logofet
and Lesnaya, 2000; Shamshad et al., 2005). In the context of this study,
expert-based approaches are best suited to derive the TPM. Experts are
asked to complete a TPM according to their knowledge and expecta-
tions, and to report their confidence in each estimate (Kuhnert et al.,
2010; Pollino et al., 2007). These confidence levels are then used to
weight the estimates of all experts in a final TPM (Pollino et al., 2007).
It is important to clearly define the investigated process and boundary
conditions to ensure that different expert estimates are based on the
same assumptions and thus comparable.

In our case study, the second-order TPM describes the probability
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for light transmittance (LT) at time t being in one of the four defined
states, given the light transmittance state of the system at time t−1 (i.e.
ten years ago) and t−2 (i.e. twenty years ago), and the land-use state
(i.e. forest management) at time t (LUt). Since both variables (light
transmittance and forest management) have four possible states, the
second-order TPM contains 64 scenarios= 4 (LTt−2)× 4 (LTt−1)× 4
(LUt). A team of six experts (all author of this paper) provided a
probability distribution and a confidence level for this probability dis-
tribution for each of these 64 scenarios, resulting in one second-order
TPM (see Appendix B). Clear guidelines, definitions, boundary condi-
tions and assumptions were provided to all experts (Appendix C). Based
on the second-order TPM, we calculated the strength of influence be-
tween nodes (see box 1) in the Markov chain. We found a strength of
influence of 0.03 for the second-order relation (influence of LTt−2 on
LTt) and 0.35 for the first-order relation (influence of LTt−1 on LTt).
Light transmittance at t thus mainly depended on light transmittance at
t−1, and less on light transmittance at t−2. The strength of influence of
LUt on LTt was 0.49. We concluded that a first-order Markov chain is
sufficient to model the light dynamics over time given the land-use
trajectory. All further results and figures are from the first-order
Markov chain. We derived a first-order TPM by marginalization (i.e.
grouping scenarios with the same light transmittance state at t−1 (thus:
only differing in the light transmittance state at t−2) and calculating
the average probability distribution for each group of scenarios)
(Table 1, Appendix B). The first-order TPM describes the probability for
light transmittance (LT) at time t being in one of the four defined states,
given the light transmittance state of the system at time t−1 (i.e. ten
years ago) and the land-use state at time t (LUt), and thus contains 16
scenarios= 4 (LTt−1)×4 (LUt).

2.5. Step 5: Land-use trajectory

Knowledge on past land use can be gathered from natural archives,
such as tree-ring series or soil properties, and cultural archives, such as
old aerial pictures, historical maps, old management plans, and face-to-
face interviews with locals, land owners or managers. The land-use
trajectory comprises the translation of what is known about the past
land use of the system into a sequence of the possible land-use states
defined in Section 2.2 (step 2). Thus, for each time step in the chain, the
land-use state that best describes the situation at that time needs to be
determined, and will be entered in the Markov chain as evidence. This

can, depending on the certainty of the land-use trajectory, either be
done as hard evidence, assigning a 100% probability to the assumed
land-use state at each time step, or as soft evidence, providing prob-
abilities for the different states of the land-use variable that sum up to
100% (box 1).

For our case study, two authors of this paper, each with detailed
knowledge of the case study regions, investigated the management
history of the 29 plots and completed a standardized land-use history
questionnaire (Appendix D). The historical information was used to
assign a land-use state to each 10-year time step for each plot, starting
in 1950 (Appendix E). Some assumptions were necessary, due to var-
iations in the level of detail of the available historical data (Appendix
E). To illustrate the possibility of including an uncertain land-use tra-
jectory in the model, we defined three alternative trajectories for one of
the Czech plots (Plot KO775; Table 2). The historical information for
this plot mentioned sanitary thinnings of standards in the period
1900–2010. We assumed that every 30 years one of these thinnings
affected the plot and used a different timing of this thinning frequency
in the three alternative land-use trajectories. Presuming that each al-
ternative is equally likely, each time step between 1950 and 2010 has a
66.6% probability of ‘zero cut’ and 33.3% probability of ‘thinning’,
which can be included in the model as soft evidence.

2.6. Step 6: Running the model

Numerous software packages can be used to implement and run
Markov-chain models. Aside from software packages that are often used
for Markov-chain modelling (e.g. R (Spedicato, 2017), MARCA
(Stewart, 1996), PRISM (Kwiatkowska et al., 2011)), also software
packages primarily designed for Bayesian belief network modelling can
be highly suitable (e.g. Netica (Norsys, 1998), Hugin (Hugin, 2008) and
GeNie (Druzdzel 1999; http://www.bayesfusion.com)) (Landuyt et al.,
2013). In our case study, models were implemented and run using the
free software package GeNie. We built the model structure (a first-order
Markov chain with one auxiliary variable), and entered the weighted-
average TPM of the six experts (cf. Appendix B). Then, we entered the
assumed land-use state for each considered time step, first as hard
evidence (i.e. assigning a 100% probability to the assumed land-use
state) for all 29 plots, and then as soft evidence (i.e. providing prob-
abilities for the different states of the land-use variable that sum up to
100%) for one of the plots, to illustrate how using hard vs. soft evidence

Table 1
The first-order Transition Probability Matrix (TPM) derived from the second-order TPM by marginalization. The pie charts represent the average expected probability
distribution of light transmittance at t for the 16 different scenarios (i.e. 16 combinations of the land-use state at t and the light transmittance state at (t−1). The full
first- and second-order TPMs can be found in Appendix B.
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influences the results. For each of the 29 study plots, the model then
calculated the probability of each light transmittance state to occur at
each time step (for seven time steps of 10 years; from 1950 to 2020),
given the specific land-use trajectory of the plot.

Note that the model can be updated with evidence on the state of
the driving variable at certain time steps (in case these data are avail-
able). In our case study, we have light transmittance data for time step
t6 (2010–2020). We first used these data to evaluate the model out-
comes (Section 2.7) and then updated the model using the light trans-
mittance data as evidence to generate model outcomes for further
analysis (see Section 2.8 for details).

2.7. Step 7: Evaluation of model outcomes

The final model output is a probability distribution of the different
states of the driving variable at each time step. In other words, the
probability for each possible state of the driving variable at each time
step is predicted based on the land-use history data and the TPM
(Fig. 3). From the probability distribution output, a user can derive
several variables to use in further analyses. Time series of, for instance,
the mean expected value, the most probable state to occur or the
probability for a certain state to occur (e.g. Dlamini, 2010; Smith et al.,
2007) can be used to further investigate and analyse ecological process
dynamics. In our case study, we calculated the mean expected value of
light transmittance at each time step based on the probability dis-
tribution at each time step and the mean value of each light transmit-
tance (LT) state:

= + + +
= + + +

LT P SS P MS P ML P SL
P P P P

mean expected . ¯ . ¯ . ¯ . ¯

. 4% . 14% . 30% . 70%
SS MS ML SL

SS MS ML SL (1)

with SS, MS , ML and SL the class means of respectively strong shade,
moderate shade, moderate light and strong light; and with P the
probability for a light transmittance state to occur.

Metrics to evaluate the performance of models that produce a
probabilistic output include confusion tables, k-fold cross-validation,
receiver operating characteristic curves, and several performance in-
dices such as spherical pay-off, Schwarz’ Bayesian information cri-
terion, and true skill statistic (Marcot, 2012). Another commonly used
approach is based on comparing the model performance to the expected
percentage of correct classifications if the prediction was made in a
random manner (i.e. by a model called random classifier or baseline
classifier) (e.g. Genc and Dag 2016). In our case study, we used light
transmittance data obtained from the 2015 survey that took place in
each of the 29 plots (Appendix A) to evaluate the model performance.
We measured light transmittance with a spherical densiometer
(Forestry Suppliers, 2008; Lemmon, 1957). For the time step t6
(2010–2020) for which observed light transmittance data are available,
we compared model predictions against predictions of an indifferent
baseline classifier (uniform distribution). For each plot, the model
performance was expressed as the predicted probability of the observed
light transmittance state at the survey time, minus the baseline

probability of that state. Since the defined light transmittance classes
were unbalanced, baseline probabilities, derived from a uniform dis-
tribution, were set to 8%, 12%, 20% and 60%, for the states ‘strong
shade’, ‘moderate shade’, ‘moderate light’ and ‘strong light’, respec-
tively. Positive model performance values, where predicted probability
values are higher than their baseline, indicate that model predictions
are informative.

In our case study, the model performance differed between plots
(Fig. 4), and for the majority of the plots, the informed model was
performing better than the random (baseline) model (more positive
than negative values in Fig. 4). Many of the plots for which the model
performed badly were thinned within the 20 years prior to the survey.
Thinning events close to the survey hence seemed to decrease the
model’s performance. Two possible explanations for this observation
are: (i) the documented thinnings might not have taken place in or close
to the plot, and (ii) the experts who completed the TPM might have
wrong expectations about the effect of thinnings on light levels. The
experts generally assumed thinnings to increase light levels, but a re-
cent study showed that light levels at the forest floor can be similar in
forests with a dense vs. a more open canopy, due to a higher shrub
density in the more open forests (Sercu et al., 2017).

Including uncertainty in the timing of thinning events in our model
resulted in a more gradual change in predicted average light trans-
mittance over time compared to the cyclic behaviour of light trans-
mittance for thinning events with a certain timing (Fig. 5). Yet, the
general trend, i.e. an overall decrease in light transmittance over time,
was similar for certain and uncertain land-use trajectories.

2.8. Step 8: Application of model outcomes

For the 29 plots of our case study, we have vegetation data from two
surveys (the first survey in the 1950s, 60s or 70s, depending on the
region, and the second in 2015; see Appendix A). The survey data

Table 2
Three alternative land-use (LU) trajectories for one of the Czech plots (KO775), with shifted timings for the sanitary thinnings that took place between 1900 and
2010. The last row shows how alternative trajectories can be combined into one uncertain land-use trajectory, which can be entered in the model as soft evidence.

Fig. 4. Measure of model performance for the 29 plots of our case study, cal-
culated as the predicted probability of the observed light transmittance state (at
the 2015 survey) minus the baseline probability of that state (based on a uni-
form distribution). The more positive the value, the better the model predic-
tions. The colours of the bars indicate the observed light transmittance state
during the 2015 survey.
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comprise an estimated cover (in %) for each species in three separate
layers, i.e. tree layer (all trees taller than half of the height of the ca-
nopy trees), shrub layer (all woody plants taller than 1.3 m not included
in the tree layer) and understorey (all plants smaller than 1.3 m). We
have data on light transmittance for the 2015 survey, measured with a
spherical densiometer, and derived estimates of light transmittance for
the first survey through the relationship between the light transmit-
tance and tree and shrub cover data of the second survey (see Appendix
F). We included the light transmittance data of both time steps (the two
survey times) as evidence in our model to calculate a time series of
mean expected light transmittance for each plot. We expect that in-
cluding evidence will make the model results more informative, but we
cannot quantify this effect, as there is no validation data available. We
did not include uncertainty in the land-use trajectory to obtain the es-
timated light transmittance over time. We used the obtained time
series, combined with the vegetation data from the 2015 survey, to
assess the importance of past light levels on the current understorey
community composition.

The data from the two surveys provide light transmittance values at
two time points, as well as an estimation for light transmittance values
in between both surveys, given we assume linear dynamics (Fig. 6a).
Our framework, however, allows uncovering the light transmittance in
between surveys, demonstrating that two plots with very similar light
levels during both surveys may have experienced completely different
light regimes in between surveys (Fig. 6b).

We used a simple linear model to explore the importance of past
light levels for understorey community composition. The response

variable was the proportion of typical forest species (i.e. species found
mainly in closed forest, as defined for the lowlands of the Czech
Republic, cf. Heinken, unpublished results) in the understorey com-
munity (all plants smaller than 1.3m height, including tree species) in
the 2015 survey. The explanatory variables were the cumulative light
transmittance, i.e. the area under the curve of estimated light trans-
mittance over time (Fig. 6c), for 10 and 60 years prior to the 2015
survey. As covariates, we included the total number of species present
in 2015 and the region (i.e. Koda Wood, Zvolen, or Slovak Karst – see
Section 2) of a plot.

We found that the cumulative light transmittance over a period of
60 years prior to the survey was a better predictor of the proportion of
typical forest species in a plot’s understorey community (p=0.07),
compared to the cumulative light transmittance of the recent past (i.e.
10 years prior to the survey) (p=0.16) (Fig. 7). This suggests that the
current understorey composition is better explained by cumulative light
levels over the past 60 years than by the more recently prevailing light
levels. Study plots with a higher number of species in the understorey
had a lower proportion of typical forest species, and the plots in Zvolen
had a lower proportion of typical forest species than in the other two
regions. The model explains 43% of the variation in the proportion of
typical forest species (R2= 0.43); an acceptable R2-value for ecological
processes. Our findings suggest that management legacies are present in
forest understoreys and are in accordance with Thomas et al. (1999)
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Fig. 5. Comparison between the results of a first-order Markov chain, with and
without accounting for uncertainty in the land-use (LU) trajectory (see Table 2),
for one plot from our case study (KO 775) and seven 10-year time steps during
1950–2020.

Fig. 6. Graphical illustration of the added value of our framework for a resurvey study, using 3 of our 29 study plots. Light transmittance values are only available at
the two survey times. (a) Light transmittance between both surveys can be estimated through linear interpolation. (b) Using our framework, light transmittance in
between surveys can be estimated, demonstrating that two plots with similar light levels for both surveys may have experienced completely different light regimes
between the surveys. (c) The projected time series of light transmittance can be used to calculate, for example, the cumulative light transmittance over the 40 years
before a survey.

Fig. 7. Effect sizes of cumulative light transmittance (LT) over the past 10 and
60 years prior to the survey for the proportion of typical forest species in the
total species pool. Significant effects are indicated with ‘*’ (p < 0.10). The
effect sizes of the covariates ‘total species number’ and ‘region’ are also shown.
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and Dölle and Schmidt (2009), who found that the light-vegetation
relationship might be better explained by past light regimes than by
current light conditions because of the slowness of plant community
changes. Note that our findings are limited by (i) the small sample size
and (ii) possible correlation structures among plots in each region that
are not accounted for in our simple analysis. All analyses were per-
formed in R 3.3.2 (R Core Team, 2017).

3. Discussion

We proposed a framework based on the hypothesis that past land
use affects current ecosystem properties through its impact on past
values of driving variables (Fig. 1). We used our framework to model
the temporal dynamics of one such driving variable (i.e. light trans-
mittance) based on land-use history data, to look for effects of past land
use on current understorey composition in temperate forests. To more
thoroughly estimate the past resources and conditions of an ecosystem,
the modelling could be repeated for other driving variables relevant for
the particular study system.

3.1. Strengths of the framework

The strength of the framework is its applicability to different types
of ecological processes and ecosystems, while previously developed
indices or classification schemes for quantifying land-use legacies were
only applicable to specific ecosystems, such as forests (e.g. Schall and
Ammer 2013; Kahl and Bauhus 2014), grasslands (e.g. Blüthgen et al.,
2012), or agricultural fields (e.g. Dietrich et al., 2012). The modelling
framework of Ogle et al. (2015) for quantifying ecological memory is
also applicable in different ecosystems, but has the disadvantage of
requiring long continuous time series. When such long-term data are
unavailable or incomplete, which is often the case, our framework of-
fers the opportunity to derive time series of biologically meaningful
driving variables from uncertain or incomplete land-use data.

Markov chains offer the advantage that they can handle low-quality
land-use data with high uncertainties since both hard evidence (100%
certainty about the land use at a certain time point, e.g. based on pho-
tographs) and soft evidence (probabilistic information about the land use
at a certain time point, e.g. based on expert information) can be inserted
(Jensen and Nielsen, 2007). The general applicability of the proposed
framework is further improved by allowing the user to adjust the order of
the Markov chain, depending on the expected extent of influences of the
past. For our case study, where we model light transmittance over time
for a given land-use trajectory, we found very small influences of the
second-order term of the Markov chain (based on the Transition Prob-
ability Matrix (TPM)), suggesting that light transmittance at the forest
floor mainly depended on more recent management events.

3.2. Opportunities for improving model performance

The poor model performance that we observed for some of the plots
in our case study can have several reasons. We believe the most im-
portant reason is the high uncertainty of the data on past land use. As the
exact timing of management interventions was often unknown, espe-
cially at the plot level, we can’t expect to be able to accurately predict
light transmittance values at a specific point in time. In addition, the
resolution of the Markov chain in the application (i.e. time intervals of
10 years) might be too low to capture small fluctuations in light avail-
ability that might have had an impact on the understorey. However,
when the aim of the model is to derive general trends in the dynamics of
a driving variable, such as cumulative light availability, this bias can be
considered less problematic. We illustrated this with one of the plots
from our case study (Fig. 5), where similar general trends were predicted
with and without accounting for uncertainty in the land-use trajectory.

Another potential weakness of the framework is the strong depen-
dence of the model output on the quality of the Transition Probability

Matrix (TPM), which depends on the knowledge of the consulted ex-
perts. However, the TPM might be improved by including literature
data and data-learning techniques to estimate the conditional prob-
abilities. The latter, however, requires extensive long-term data, which
are often not available. Providing experts with clear guidelines and
background information on the investigated process and boundary
conditions is key for obtaining high-quality TPMs. In addition, when
multiple experts have provided a TPM, running the model with each
separate TPM instead of the (weighted) average TPM can provide in-
formation on the dependency of the model results on the TPM, and can
reveal how some TPMs better fit the data (assuming qualitative vali-
dation data is available) than others and should therefore be given more
weight in the final TPM.

Finally, information loss through strong simplifications due to the
discrete nature of Markov chains can decrease model performance.
There is a trade-off between accuracy and complexity, as an increase in
the number of states will also increase the number of rows of the TPM.
By using ecologically relevant thresholds, information loss through
discretization can be minimized.

To deal with the abovementioned issues, a lot can be learned from
recent advances in the field of Bayesian belief network modelling, a
modelling technique that also works with discrete variables and an
identical probabilistic knowledge base that is often derived from a
combination of literature data, field data and expert knowledge (see, for
example, Murphy (2002)). Within this field, expert knowledge elicitation
techniques (e.g. Kuhnert et al., 2010; Pollino et al., 2007), and data as-
similation techniques (e.g. Chen and Pollino, 2012; Marcot et al., 2006)
to combine different data sources have been developed and optimized.

Marcot (2012) suggests that Bayesian belief networks may best be
developed stepwise, starting from a less ambitious model based on
expert knowledge, testing and calibrating the model, updating the
structure of the model and retesting it until a satisfying performance is
reached. In this paper, we used Markov chains, which are related to
Bayesian belief networks and also offer the flexibility to update the
model with auxiliary variables, such as the land-use variable in Fig. 2.
They can easily be extended even further, depending on the complexity
of the ecological processes that are studied. For example, if next to land
use, other variables influence the state of the driving variable, these can
be added to the chain as well, and model performance can be tested
again. Of course, this will only work if we have temporal data on this
additional auxiliary variable and if the relation between this variable
and the driving variable can be quantified through experts or data.
Besides, the improvement of model performance can only be tested
when qualitative validation data is available.

3.3. Applicability of the framework

With our framework, we are able to predict time trends of driving
variables of ecological processes and properties, for a given land-use
history. We believe this is a key step leading to further investigation of
how past land use affects current ecosystems. Long time series of
measured past resources and conditions are often not available. With
the time trends we model, we can reveal some of the likely past be-
haviour of these resources and conditions (cf. Fig. 6), allowing us to
detect why systems with seemingly similar contemporary resources and
conditions can display different properties. In our case study, we de-
rived past light dynamics to assess how current herb layer communities
are (partially) shaped by past light availability, and revealed why forest
plots with similar current light conditions have different herb layer
communities. Several other drivers, such as soil pH, nutrient avail-
ability and soil moisture content also affect herb layer communities
(Klanderud et al., 2015). It would therefore be interesting to apply the
proposed framework on the other important driving variables, which
might be influenced by other land-use variables. It may not always be
feasible to determine all driving variables of an ecological process, but
gaining insight into the dynamics of a subset of the driving variables
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will already improve our understanding of the process and its depen-
dence on past land use.

We hope our framework will provide an opportunity for further studies
on how past ecosystem properties (i.e. past levels of resources and con-
ditions), controlled by past land use, are affecting contemporary ecological
properties and patterns. The modelling approach can easily be translated
to different driving variables and different land-use variables and can be
extended or adapted depending on the complexity of the study system. We
therefore believe the proposed approach is widely applicable in studies
where researchers have (some) data on past land use and want to take
those into account to achieve a better understanding and better predictions
of the contemporary or future ecological state.

Box 1
Theoretical background of Markov chains.

Markov chains are graphical, multivariate, statistical models,
representing dynamic systems wherein variables can go from one
state to another over time, with a transition probability that de-
pends on preceding conditions (see Fig. 1 box 1). A Markov chain
consists of nodes, representing the system’s variables, and ar-
rows, representing the causal relations among these variables.
Each variable is discrete and characterized by a set of states it can
manifest (numerical values, discrete classes or qualitative levels)
and a probability distribution that quantifies the probability of
being in one of the states. If such a probability distribution de-
pends on the state of another variable, it is referred to as a con-
ditional probability, which quantifies the causal relation re-
presented by an arrow. Through probabilistic inference, a
Markov chain can infer the probability distribution for a given
variable conditional on the state of the other variables in the
model (Jensen and Nielsen, 2007).

The order of a Markov chain (Fig. 1 box 1) is the number of
time steps in the past that influence the probability of the current
state (Shamshad et al., 2005).

Auxiliary variables can be added to Markov chains to model
more complex processes with multiple variables. For example, in
Fig. 2 box 1, the state of the variable X at each time step depends
on the state of X at the previous time step (first-order Markov
chain), and on the state of the auxiliary variable Y at the current
time step.

The Transition Probability Matrix (TPM) is the core of a
Markov chain, in which each element represents the probability
that a variable is in a certain state, at a certain time step, given
the state of the previous time step(s) (Golroo et al., 2012; Logofet
and Lesnaya, 2000; Shamshad et al., 2005).

Let X be a variable, possessing discrete states S (S={1,2,
…,m}). In general, for a given sequence of time points

< < < <t t t tn n1 2 1 , the conditional probability for X to be in a
certain state at time tn is (Balzter, 2000; Logofet and Lesnaya,
2000; Shamshad et al., 2005):

P X t X t X t X t( ( )| ( ), ( ), , ( ))s n n1 2 1 (1)

In formula (1), X t( )n depends on the state of X at all previous
time steps t t, , n1 1, representing a Markov chain of order n 1.
Formulae (2) and (3) show the conditional probabilities for a
first- and second-order Markov chain:

P X t X t( ( )| ( ))n n 1 (2)

P X t X t X t( ( )| ( ), ( ))n n n2 1 (3)

These conditional probabilities make up the TPM. For m
states, the first-order TPM takes the form (Shamshad et al., 2005):
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with pi j, the probability of state i, if the previous state was j.
Similarly, the second-order TPM takes the form (Shamshad

et al., 2005):
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with pi j k, , the probability of state i, if the states at the two previous
time steps were (in chronological order) k and j.

In Markov chain studies, a TPM is often derived from em-
pirical evidence or machine learning (Balzter, 2000; Logofet and
Lesnaya, 2000; Usher, 1981). However, transition probabilities
can also be derived from expert knowledge (Aguilera et al.,
2011), a particularly suitable approach when long-term data
series are lacking (Golroo et al., 2012; Pollino et al., 2007).

The strength of influence can be calculated for each arrow
in a Markov chain based on the Transition Probability Matrix
(TPM), and represents a measure for the extra information that is
obtained by knowing the value of the parent (i.e. the node where
the arrow starts from) (Theijssen et al., 2013). In other words, it
quantifies how much the value of the parent node affects the
value of the child node (i.e. the node where the arrow arrives).

Belief updating is the process of inserting new information
(evidence) on the status of one of the variables in a Markov chain.
This will change the probability distribution of other variables in
the network, and lower the uncertainty in the model output
(Jensen and Nielsen, 2007). The process of inserting hard evi-
dence into the network is called instantiation, and comprises
assigning a 100% probability to one of the states of a variable.
Soft evidence provides probabilistic information on the status of
a variable (Jensen and Nielsen, 2007).

Fig. 1 box 1. In the first-order Markov chain (a), the state of X only depends on
the state of X at the previous time step. In the second- and third-order Markov
chains (b, c), the state of X depends on the state of X at the two and three pre-
vious time steps, respectively.

Fig. 2 box 1. First-order Markov chain with one auxiliary variable. The state of
the variable X at each time step depends on the state of X at the previous time
step, and on the state of the auxiliary variable Y at the current time step.

L. Depauw, et al. Ecological Indicators xxx (xxxx) xxxx

9



4. Author contribution statement

LD, DL, MPP and KV conceived and designed the study with sig-
nificant contributions from SLM and HB; KV and MPP provided insight
and ideas for the statistical analyses; SLM, HB, MPP, MV, MK and FM
assisted with the data collection; LD led the writing of the manuscript.
All authors contributed critically to the drafts and gave final approval
for publication.

5. Data accessibility

We intend to archive all data used in this paper on our public
website: www.pastforward.ugent.be.

Acknowledgements

We thank the European Research Council (ERC Consolidator grant
no. 614839: PASTFORWARD) for funding the scientific research and
fieldwork. DL was supported by a postdoctoral fellowship of the
Research Foundation-Flanders (FWO). MK was supported by institu-
tional support RVO 67985939. FM was supported by APVV-15-0270
and APVV-15-0176. We thank Martin Macek and Karol Ujházy for as-
sisting us with the relocation of the plots and the determination of plant
species. We also thank Robbe De Beelde, Sanne Govaert and Bram
Bauwens for their support with the fieldwork, and Emiel De Lombaerde
and Pieter Vangansbeke for their input on the data analysis. We thank
three anonymous reviewers and the Editor, Christine Fürst, for their
constructive comments that improved and clarified the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ecolind.2019.05.026.

References

Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A., 2011. Bayesian
networks in environmental modelling. Environ. Model. Softw. 26, 1376–1388.
https://doi.org/10.1016/j.envsoft.2011.06.004.

Baeten, L., Bauwens, B., De Schrijver, A., De Keersmaeker, L., Van Calster, H.,
Vandekerkhove, K., Roelandt, B., Beeckman, H., Verheyen, K., 2009. Herb layer
changes (1954–2000) related to the conversion of coppice-with-standards forest and
soil acidification. Appl. Veg. Sci. 12, 187–197.

Balandier, P., Marquier, A., Dumas, Y., Gaudio, N., Philippe, G., Da Silva, D., Adam, A.,
Ginisty, C., Sinoquet, H., 2009. Light sharing among different forest strata for sus-
tainable management of vegetation and regeneration. For. Achiev. Millenn. Goals
81–86.

Balzter, H., 2000. Markov chain models for vegetation dynamics. Ecol. Modell. 126,
139–154.

Barron-Gafford, G.A., Cable, J.M., Bentley, L.P., Scott, R.L., Huxman, T.E., Jenerette,
G.D., Ogle, K., 2014. Quantifying the timescales over which exogenous and en-
dogenous conditions affect soil respiration. New Phytol. 202, 442–454. https://doi.
org/10.1111/nph.12675.

BayesFusion, L., 2017. GeNIe Modeler: User manual.
Blüthgen, N., Dormann, C.F., Prati, D., Klaus, V.H., Kleinebecker, T., Hölzel, N., Alt, F.,

Boch, S., Gockel, S., Hemp, A., Müller, J., Nieschulze, J., Renner, S.C., Schöning, I.,
Schumacher, U., Socher, S.A., Wells, K., Birkhofer, K., Buscot, F., Oelmann, Y.,
Rothenwöhrer, C., Scherber, C., Tscharntke, T., Weiner, C.N., Fischer, M., Kalko,
E.K.V., Linsenmair, K.E., Schulze, E.-D., Weisser, W.W., 2012. A quantitative index of
land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic
Appl. Ecol. 13, 207–220. https://doi.org/10.1016/j.baae.2012.04.001.

Bürgi, M., Östlund, L., Mladenoff, D.J., 2017. Legacy effects of human land use: ecosys-
tems as time-lagged systems. Ecosystems 20, 94–103. https://doi.org/10.1007/
s10021-016-0051-6.

Cable, J.M., Ogle, K., Barron-Gafford, G.A., Bentley, L.P., Cable, W.L., Scott, R.L.,
Williams, D.G., Huxman, T.E., 2013. Antecedent conditions influence soil respiration
differences in shrub and grass patches. Ecosystems 16, 1230–1247. https://doi.org/
10.1007/s10021-013-9679-7.

Carpinone, A., Giorgio, M., Langella, R., Testa, A., 2015. Markov chain modeling for very-
short-term wind power forecasting. Electr. Power Syst. Res. 122, 152–158.

Chen, S.H., Pollino, C.A., 2012. Good practice in Bayesian network modelling. Environ.
Model. Softw. 37, 134–145. https://doi.org/10.1016/j.envsoft.2012.03.012.

De Cáceres, M., Brotons, L., Aquilué, N., Fortin, M.J., 2013. The combined effects of land-

use legacies and novel fire regimes on bird distributions in the Mediterranean. J.
Biogeogr. 40, 1535–1547. https://doi.org/10.1111/jbi.12111.

De Frenne, P., Baeten, L., Graae, B.J., Brunet, J., Wulf, M., Orczewska, A., Kolb, A.,
Jansen, I., Jamoneau, A., Jacquemyn, H., Hermy, M., Diekmann, M., De Schrijver, A.,
De Sanctis, M., Decocq, G., Cousins, S.A.O., Verheyen, K., 2011. Interregional var-
iation in the floristic recovery of post-agricultural forests. J. Ecol. 99, 600–609.
https://doi.org/10.1111/j.1365-2745.2010.01768.x.

De Keersmaeker, L., Martens, L., Verheyen, K., Hermy, M., De Schrijver, A., Lust, N.,
2004. Impact of soil fertility and isolation on diversity of herbaceous woodland
species colonizing afforestations in Muizen Forest. Belgium. For. Ecol. Manage. 188,
291–304.

den Ouden, J., Muys, B., Mohren, F., Verheyen, K., 2010. Bosecologie en bosbeheer. Acco.
Dietrich, J.P., Schmitz, C., Müller, C., Fader, M., Lotze-Campen, H., Popp, A., 2012.

Measuring agricultural land-use intensity – A global analysis using a model-assisted
approach. Ecol. Modell. 232, 109–118. https://doi.org/10.1016/j.ecolmodel.2012.
03.002.

Dlamini, W.M., 2010. A Bayesian belief network analysis of factors influencing wildfire
occurrence in Swaziland. Environ. Model. Softw. 25, 199–208. https://doi.org/10.
1016/j.envsoft.2009.08.002.

Dölle, M., Schmidt, W., 2009. Impact of tree species on nutrient and light availability:
evidence from a permanent plot study of old-field succession. Plant Ecol. 203,
273–287. https://doi.org/10.1007/s11258-008-9547-2.

Druzdzel, M.J., 1999. SMILE: Structural Modeling, Inference, and Learning Engine and
GeNIe: A Development Environment for Graphical Decision-Theoretic Models. In:
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-
99). pp. 342–343.

Dupouey, J.L., Dambrine, E., Laffite, J.D., Moares, C., 2002. Irreversible impact of past
land use on forest soils and biodiversity. Ecology 83, 2978–2984. https://doi.org/10.
2307/3071833.

Essl, F., Dullinger, S., Rabitsch, W., Hulme, P.E., Pyšek, P., Wilson, J.R.U., Richardson,
D.M., 2015. Historical legacies accumulate to shape future biodiversity in an era of
rapid global change. Divers. Distrib. 21, 534–547. https://doi.org/10.1111/ddi.
12312.

Flinn, K.M., Marks, P.L., 2007. Agricultural legacies in forest environments: tree com-
munities, soil properties, and light availability. Ecol. Appl. 17, 452–463. https://doi.
org/10.1890/05-1963.

Forestry Suppliers, 2008. Using Forest Densiometers.
Foster, D.R., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D., Knapp, A., 2003. The

importance of land-use legacies to ecology and conservation. Bioscience 53, 77–88.
https://doi.org/10.1641/0006-3568(2003) 053[0077:TIOLUL]2.0.CO;2.

Genc, O., Dag, A., 2016. A Bayesian network-based data analytical approach to predict
velocity distribution in small streams. J. Hydroinformatics 18, 466–480. https://doi.
org/10.2166/hydro.2015.110.

Golroo, A., Ph, D., Eng, P., Tighe, S.L., 2012. Development of pervious concrete pavement
performance models using expert opinionsJ. Transp. Eng. 138, 634–648. https://doi.
org/10.1061/(ASCE)TE.1943-5436.0000356.

Hahn, P.G., Orrock, J.L., 2015. Land-use history alters contemporary insect herbivore
community composition and decouples plant-herbivore relationships. J. Anim. Ecol.
84, 745–754. https://doi.org/10.1111/1365-2656.12311.

Harding, J.S., Benfield, E.F., Bolstad, P.V., Helfman, G.S., Jones, E.B.D., 1998. Stream
biodiversity: the ghost of land use past. Proc. Natl. Acad. Sci. U.S.A. 95,
14843–14847. https://doi.org/10.1073/pnas.95.25.14843.

Hawkins, T.W., Ellis, A.W., 2010. The dependence of streamflow on antecedent subsur-
face moisture in an arid climate. J. Arid Environ. 74, 75–86. https://doi.org/10.
1016/j.jaridenv.2009.07.003.

Hédl, R., Kopecký, M., Komárek, J., 2010. Half a century of succession in a temperate
oakwood: from species-rich community to mesic forest. Divers. Distrib. 16, 267–276.
https://doi.org/10.1111/j.1472-4642.2010.00637.x.

Horn, H.S., 1975. Markovian properties of forest successions. In: Cody, M.L., Diamond,
J.M. (Eds.), Ecology and Evolution of. Communities. Belknap press, pp. 196–211.

Hugin, 2008. Hugin Researcher, Version 6.9: User’s Guide. Hugin Expert, Aalborg,
Denmark.

Jensen, F.V., Nielsen, T.D., 2007. Bayesian Networks and Decision Graphs, 2nd ed.
Springer Science + Business Media LLC.

Kahl, T., Bauhus, J., 2014. An index of forest management intensity based on assessment
of harvested tree volume, tree species composition and dead wood origin. Nat.
Conserv. 7, 15–27. https://doi.org/10.3897/natureconservation.7.7281.

Kerr, G., Haufe, J., 2011. Thinning Practice – A Silvicultural Guide.
Klanderud, K., Vandvik, V., Goldberg, D., 2015. The importance of biotic vs. abiotic

drivers of local plant community composition along regional bioclimatic gradients.
PLoS One 10, 1–14. https://doi.org/10.1371/journal.pone.0130205.

Koerner, W., Dupouey, J.L., Dambrine, E., Benoit, M., 1997. Influence of past land use on
the vegetation and soils of present day forest in the Vosges mountains. France. J. Ecol.
85, 351–358.

Kopecký, M., Hédl, R., Szabó, P., 2013. Non-random extinctions dominate plant com-
munity changes in abandoned coppices. J. Appl. Ecol. 50, 79–87. https://doi.org/10.
1111/1365-2664.12010.

Kopecký, M., Vojta, J., 2009. Land use legacies in post-agricultural forests in the
Doupovské Mountains, Czech Republic. Appl. Veg. Sci. 12, 251–260.

Kuhnert, P.M., Martin, T.G., Griffiths, S.P., 2010. A guide to eliciting and using expert
knowledge in Bayesian ecological models. Ecol. Lett. 13, 900–914. https://doi.org/
10.1111/j.1461-0248.2010.01477.x.

Kwiatkowska, M., Normann, G., Parker, D., 2011. PRISM 4.0: Verification of Embedded
Real-time Systems. In: 23rd International Conference on Computer Aided Verification
(CAV’11). Springer, pp. 585–591. https://doi.org/10.1007/978-3-658-09994-7_1.

Landuyt, D., Broekx, S., D’hondt, R., Engelen, G., Aertsens, J., Goethals, P.L.M., 2013. A

L. Depauw, et al. Ecological Indicators xxx (xxxx) xxxx

10

http://www.pastforward.ugent.be
https://doi.org/10.1016/j.ecolind.2019.05.026
https://doi.org/10.1016/j.ecolind.2019.05.026
https://doi.org/10.1016/j.envsoft.2011.06.004
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0010
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0010
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0010
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0010
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0015
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0015
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0015
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0015
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0020
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0020
https://doi.org/10.1111/nph.12675
https://doi.org/10.1111/nph.12675
https://doi.org/10.1016/j.baae.2012.04.001
https://doi.org/10.1007/s10021-016-0051-6
https://doi.org/10.1007/s10021-016-0051-6
https://doi.org/10.1007/s10021-013-9679-7
https://doi.org/10.1007/s10021-013-9679-7
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0050
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0050
https://doi.org/10.1016/j.envsoft.2012.03.012
https://doi.org/10.1111/jbi.12111
https://doi.org/10.1111/j.1365-2745.2010.01768.x
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0070
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0070
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0070
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0070
https://doi.org/10.1016/j.ecolmodel.2012.03.002
https://doi.org/10.1016/j.ecolmodel.2012.03.002
https://doi.org/10.1016/j.envsoft.2009.08.002
https://doi.org/10.1016/j.envsoft.2009.08.002
https://doi.org/10.1007/s11258-008-9547-2
https://doi.org/10.2307/3071833
https://doi.org/10.2307/3071833
https://doi.org/10.1111/ddi.12312
https://doi.org/10.1111/ddi.12312
https://doi.org/10.1890/05-1963
https://doi.org/10.1890/05-1963
https://doi.org/10.1641/0006-3568(2003) 053[0077:TIOLUL]2.0.CO;2
https://doi.org/10.2166/hydro.2015.110
https://doi.org/10.2166/hydro.2015.110
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000356
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000356
https://doi.org/10.1111/1365-2656.12311
https://doi.org/10.1073/pnas.95.25.14843
https://doi.org/10.1016/j.jaridenv.2009.07.003
https://doi.org/10.1016/j.jaridenv.2009.07.003
https://doi.org/10.1111/j.1472-4642.2010.00637.x
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0155
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0155
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0165
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0165
https://doi.org/10.3897/natureconservation.7.7281
https://doi.org/10.1371/journal.pone.0130205
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0185
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0185
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0185
https://doi.org/10.1111/1365-2664.12010
https://doi.org/10.1111/1365-2664.12010
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0195
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0195
https://doi.org/10.1111/j.1461-0248.2010.01477.x
https://doi.org/10.1111/j.1461-0248.2010.01477.x


review of Bayesian belief networks in ecosystem service modelling. Environ. Model.
Softw. 46, 1–11. https://doi.org/10.1016/j.envsoft.2013.03.011.

Lemmon, P.E., 1957. A new instrument for measuring forest overstory density. J. For. 55,
667–668.

Leuning, R., Cleugh, H.A., Zegelin, S.J., Hughes, D., 2005. Carbon and water fluxes over a
temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measure-
ments and comparison with MODIS remote sensing estimates. Agric. For. Meteorol.
129, 151–173. https://doi.org/10.1016/j.agrformet.2004.12.004.

Logofet, D.O., Lesnaya, E.V., 2000. The mathematics of Markov models: what Markov
chains can really predict in forest successions. Ecol. Modell. 126, 285–298.

Lunt, I.D., Spooner, P.G., 2005. Using historical ecology to understand patterns of bio-
diversity in fragmented agricultural landscapes. J. Biogeogr. 32, 1859–1873. https://
doi.org/10.1111/j.1365-2699.2005.01296.x.

Luyssaert, S., Hessenmöller, D., Von Lüpke, N., Kaiser, S., Schulze, E.D., 2011.
Quantifying land use and disturbance intensity in forestry, based on the self-thinning
relationship. Ecol. Appl. 21, 3272–3284. https://doi.org/10.1890/10-2395.1.

Máliš, F., Kopecký, M., Petřík, P., Vladovič, J., Merganič, J., Vida, T., 2016. Life-stage, not
climate change, explains observed tree range shifts. Glob. Chang. Biol. 22,
1904–1914. https://doi.org/10.1111/gcb.13210.Life-stage.

Marcot, B.G., 2012. Metrics for evaluating performance and uncertainty of Bayesian
network models. Ecol. Modell. 230, 50–62. https://doi.org/10.1016/j.ecolmodel.
2012.01.013.

Marcot, B.G., Steventon, J.D., Sutherland, G.D., Mccann, R.K., 2006. Guidelines for de-
veloping and updating Bayesian belief networks applied to ecological modeling and
conservation. Can. J. For. Res. 36, 3063–3074. https://doi.org/10.1139/X06-135.

McGrath, M.J., Luyssaert, S., Meyfroidt, P., Kaplan, J.O., Bürgi, M., Chen, Y., Erb, K.,
Gimmi, U., McInerney, D., Naudts, K., Otto, J., Pasztor, F., Ryder, J., Schelhaas, M.J.,
Valade, A., 2015. Reconstructing European forest management from 1600 to 2010.
Biogeosciences 12, 4291–4316. https://doi.org/10.5194/bg-12-4291-2015.

Moranz, R.A., Debinski, D.M., McGranahan, D.A., Engle, D.M., Miller, J.R., 2012.
Untangling the effects of fire, grazing, and land-use legacies on grassland butterfly
communities. Biodivers. Conserv. 21, 2719–2746. https://doi.org/10.1007/s10531-
012-0330-2.

Murphy, K.P., 2002. Dynamic Bayesian Networks: Representation, Inference and
Learning.

Norsys, 1998. Netica Application User’s Guide. Norsys Software Corporation,
Vancouver, BC.

Oesterheld, M., Loreti, J., Semmartin, M., Sala, O.E., Oesterheld, M., Semmartin, M.,
2001. Inter-annual variation in primary production of a semi-arid grassland related to
previous-year production. J. Veg. Sci. 12, 137–142. https://doi.org/10.2307/
3236681.

Ogle, K., Barber, J.J., Barron-Gafford, G.A., Bentley, L.P., Young, J.M., Huxman, T.E.,
Loik, M.E., Tissue, D.T., 2015. Quantifying ecological memory in plant and ecosystem
processes. Ecol. Lett. 18, 221–235. https://doi.org/10.1111/ele.12399.

Padisák, J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton,
Hungary) – A dynamic approach to ecological memory, its possible role and me-
chanisms. J. Ecol. 80, 217–230.

Parker, W.C., 2014. The relationship of stand structure with canopy transmittance: Simple
models and practical methods for managing understory light conditions in eastern
white pine (Pinus strobus L.) -dominated forests. For. Chron. 90, 489–497.

Perring, M.P., Bernhardt-Römermann, M., Baeten, L., Midolo, G., Blondeel, H., Depauw,
L., Landuyt, D., Maes, S.L., De Lombaerde, E., Carón, M.M., Vellend, M., Brunet, J.,
Chudomelová, M., Decocq, G., Diekmann, M., Dirnböck, T., Dörfler, I., Durak, T., De
Frenne, P., Gilliam, F.S., Hédl, R., Heinken, T., Hommel, P., Jaroszewicz, B., Kirby,
K.J., Kopecký, M., Lenoir, J., Li, D., Máliš, F., Mitchell, F.J.G., Naaf, T., Newman, M.,
Petřík, P., Reczyńska, K., Schmidt, W., Standovár, T., Świerkosz, K., Van Calster, H.,
Vild, O., Wagner, E.R., Wulf, M., Verheyen, K., 2018. Global environmental change
effects on plant community composition trajectories depend upon management le-
gacies. Glob. Chang. Biol. 24, 1722–1740. https://doi.org/10.1111/gcb.14030.

Perring, M.P., De Frenne, P., Baeten, L., Maes, S.L., Depauw, L., Blondeel, H., Carón,
M.M., Verheyen, K., 2016. Global environmental change effects on ecosystems: The
importance of land-use legacies. Glob. Chang. Biol. 22, 1361–1371. https://doi.org/
10.1111/gcb.13146.

Peterken, G.F., Game, M., 1984. Historical factors affecting the number and distribution
of vascular plant species in the woodlands of central Lincolnshire. J. Ecol. 72,
155–182. https://doi.org/10.1111/j.1365-2664.2005.01116.x.

Peterson, G.D., 2002. Contagious disturbance, ecological memory, and the emergence of

landscape pattern. Ecosystems 5, 329–338.
Pollino, C.A., Woodberry, O., Nicholson, A., Korb, K., Hart, B.T., 2007. Parameterisation

and evaluation of a Bayesian network for use in an ecological risk assessment.
Environ. Model. Softw. 22, 1140–1152. https://doi.org/10.1016/j.envsoft.2006.03.
006.

R Core Team, 2017. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.
org/.

Sala, O.E., Gherardi, L.A., Reichmann, L., Jobbágy, E., Peters, D., 2012. Legacies of
precipitation fluctuations on primary production: theory and data synthesis. Philos.
Trans. R. Soc. B 367, 3135–3144. https://doi.org/10.1098/rstb.2011.0347.

Schaefer, V., 2009. Alien invasions, ecological restoration in cities and the loss of eco-
logical memory. Restoration Ecol. 17, 171–176. https://doi.org/10.1111/j.1526-
100X.2008.00513.x.

Schall, P., Ammer, C., 2013. How to quantify forest management intensity in Central
European forests. Eur. J. For. Res. 132, 379–396. https://doi.org/10.1007/s10342-
013-0681-6.

Sercu, B.K., Baeten, L., van Coillie, F., Martel, A., Lens, L., Verheyen, K., Bonte, D., 2017.
How tree species identity and diversity affect light transmittance to the understory in
mature temperate forests. Ecol. Evol. 7, 10861–10870. https://doi.org/10.1002/
ece3.3528.

Shamshad, A., Bawadi, M.A., Wan Hussin, W.M.A., Majid, T.A., Sanusi, S.A.M., 2005.
First and second order Markov chain models for synthetic generation of wind speed
time series. Energy 30, 693–708. https://doi.org/10.1016/j.energy.2004.05.026.

Smith, C.S., Howes, A.L., Price, B., McAlpine, C.A., 2007. Using a Bayesian belief network
to predict suitable habitat of an endangered mammal – The Julia Creek dunnart
(Sminthopsis douglasi). Biol. Conserv. 139, 333–347. https://doi.org/10.1016/j.
biocon.2007.06.025.

Spedicato, G.A., 2017. Discrete time Markov chains with R. R J. 9 (2), 84–104. https://
doi.org/10.1002/9781118477793.ch5.

Stewart, W.J., 1996. Marca: Markov Chain Analyzer - A Software Package for Markov
Modelling Version 3.0.

Sun, Z., Ren, H., Schaefer, V., Lu, H., Wang, J., Li, L., Liu, N., 2013. Quantifying ecological
memory during forest succession: a case study from lower subtropical forest eco-
systems in South China. Ecol. Indic. 34, 192–203. https://doi.org/10.1016/j.ecolind.
2013.05.010.

Theijssen, D., ten Bosch, L., Boves, L., Cranen, B., van Halteren, H., 2013. Choosing al-
ternatives: Using Bayesian Networks and memory-based learning to study the dative
alternation. Corpus Linguist. Linguist. Theory 9, 227–262. https://doi.org/10.1515/
cllt-2013-0007.

Thomaes, A., 2014. Tree species effects on herb layer development in post-agricultural
forests. PhD thesis.

Thomaes, A., De Keersmaeker, L., De Schrijver, A., Baeten, L., Vandekerkhove, K.,
Verstraeten, G., Verheyen, K., 2013. Can soil acidity and light help to explain tree
species effects on forest herb layer performance in post-agricultural forests? Plant Soil
373, 183–199. https://doi.org/10.1007/s11104-013-1786-x.

Thomaes, A., De Keersmaeker, L., Verschelde, P., Vandekerkhove, K., Verheyen, K., 2014.
Tree species determine the colonisation success of forest herbs in post-agricultural
forests: results from a 9 yr introduction experiment. Biol. Conserv. 169, 238–247.
https://doi.org/10.1016/j.biocon.2013.10.024.

Thomas, S.C., Halpern, C.B., Falk, D.A., Liguori, D.A., Austin, K.A., 1999. Plant diversity
in managed forests: understory responses to thinning and fertilization. Ecol. Appl. 9,
864–879. https://doi.org/10.7326/0003-4819-136-9-200205070-00007.

Tinya, F., Ódor, P., 2016. Congruence of the spatial pattern of light and understory ve-
getation in an old-growth, temperate mixed forest. For. Ecol. Manage. 381, 84–92.
https://doi.org/10.1016/j.foreco.2016.09.027.

Ujházy, K., Hederová, L., Máliš, F., Ujházyová, M., Bosela, M., Čiliak, M., 2017.
Overstorey dynamics controls plant diversity in age-class temperate forests. For. Ecol.
Manage. 391, 96–105. https://doi.org/10.1016/j.foreco.2017.02.010.

Usher, M., 1981. Modelling ecological succession, with particular reference to Markovian
models. Plant Ecol. 46, 11–18. https://doi.org/10.1007/BF00118380.

Usher, M.B., 1979. Markovian approaches to ecological succession. J. 48, 413–426.
Van Calster, H., Baeten, L., Verheyen, K., De Keersmaeker, L., Dekeyser, S., Rogister, J.E.,

Hermy, M., 2008. Diverging effects of overstorey conversion scenarios on the un-
derstorey vegetation in a former coppice-with-standards forest. For. Ecol. Manage.
256, 519–528. https://doi.org/10.1016/j.foreco.2008.04.042.

L. Depauw, et al. Ecological Indicators xxx (xxxx) xxxx

11

https://doi.org/10.1016/j.envsoft.2013.03.011
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0215
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0215
https://doi.org/10.1016/j.agrformet.2004.12.004
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0225
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0225
https://doi.org/10.1111/j.1365-2699.2005.01296.x
https://doi.org/10.1111/j.1365-2699.2005.01296.x
https://doi.org/10.1890/10-2395.1
https://doi.org/10.1111/gcb.13210.Life-stage
https://doi.org/10.1016/j.ecolmodel.2012.01.013
https://doi.org/10.1016/j.ecolmodel.2012.01.013
https://doi.org/10.1139/X06-135
https://doi.org/10.5194/bg-12-4291-2015
https://doi.org/10.1007/s10531-012-0330-2
https://doi.org/10.1007/s10531-012-0330-2
https://doi.org/10.2307/3236681
https://doi.org/10.2307/3236681
https://doi.org/10.1111/ele.12399
http://refhub.elsevier.com/S1470-160X(19)30371-1/h9000
http://refhub.elsevier.com/S1470-160X(19)30371-1/h9000
http://refhub.elsevier.com/S1470-160X(19)30371-1/h9000
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0285
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0285
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0285
https://doi.org/10.1111/gcb.14030
https://doi.org/10.1111/gcb.13146
https://doi.org/10.1111/gcb.13146
https://doi.org/10.1111/j.1365-2664.2005.01116.x
http://refhub.elsevier.com/S1470-160X(19)30371-1/h9005
http://refhub.elsevier.com/S1470-160X(19)30371-1/h9005
https://doi.org/10.1016/j.envsoft.2006.03.006
https://doi.org/10.1016/j.envsoft.2006.03.006
https://doi.org/10.1098/rstb.2011.0347
https://doi.org/10.1111/j.1526-100X.2008.00513.x
https://doi.org/10.1111/j.1526-100X.2008.00513.x
https://doi.org/10.1007/s10342-013-0681-6
https://doi.org/10.1007/s10342-013-0681-6
https://doi.org/10.1002/ece3.3528
https://doi.org/10.1002/ece3.3528
https://doi.org/10.1016/j.energy.2004.05.026
https://doi.org/10.1016/j.biocon.2007.06.025
https://doi.org/10.1016/j.biocon.2007.06.025
https://doi.org/10.1002/9781118477793.ch5
https://doi.org/10.1002/9781118477793.ch5
https://doi.org/10.1016/j.ecolind.2013.05.010
https://doi.org/10.1016/j.ecolind.2013.05.010
https://doi.org/10.1515/cllt-2013-0007
https://doi.org/10.1515/cllt-2013-0007
https://doi.org/10.1007/s11104-013-1786-x
https://doi.org/10.1016/j.biocon.2013.10.024
https://doi.org/10.7326/0003-4819-136-9-200205070-00007
https://doi.org/10.1016/j.foreco.2016.09.027
https://doi.org/10.1016/j.foreco.2017.02.010
https://doi.org/10.1007/BF00118380
http://refhub.elsevier.com/S1470-160X(19)30371-1/h0400
https://doi.org/10.1016/j.foreco.2008.04.042

	A general framework for quantifying the effects of land-use history on ecosystem dynamics
	Introduction
	Stepwise explanation and illustration of the modelling framework
	Step 1: Defining variables
	Step 2: Discretization of variables
	Step 3: Defining the model
	Step 4: Transition probability matrix
	Step 5: Land-use trajectory
	Step 6: Running the model
	Step 7: Evaluation of model outcomes
	Step 8: Application of model outcomes

	Discussion
	Strengths of the framework
	Opportunities for improving model performance
	Applicability of the framework

	Author contribution statement
	Data accessibility
	Acknowledgements
	Supplementary data
	References




